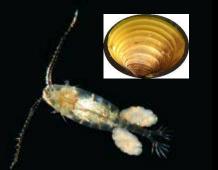
How will climate change induced warming affect Delta smelt?

Larry R. Brown U.S. Geological Survey California Water Science Center



Funding: CALFED, DSP, USGS Environments (CASCaDE I and II)

Delta smelt Hypomesus transpacificus

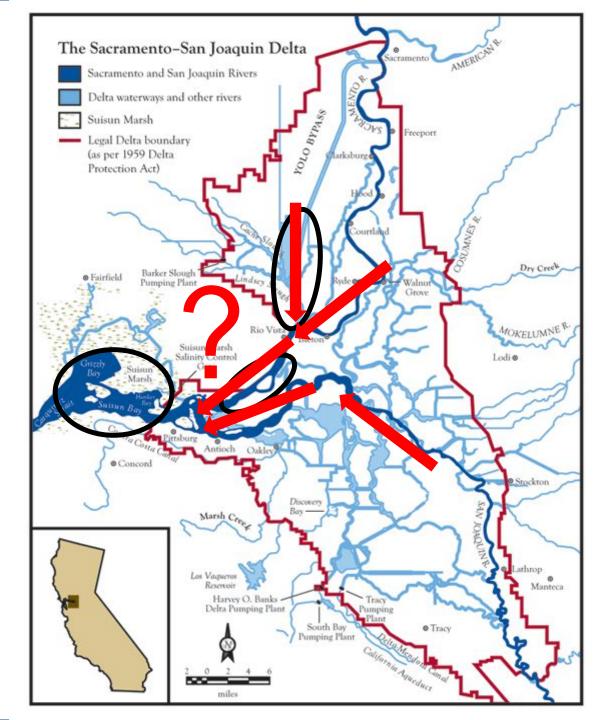
- Federal and State listed as threatened (1993)
- Granted endangered status
 - State 2009
 - Federal: 2010 warranted but precluded
- Annual (mostly) life cycle
- Endemic to the San Francisco estuary

NEALAND AND DESIGN

This neighborhood has really gone downhill!

Third Year of Major Drought! Hot Summers! Politics!

How do I balance climate change with everything else going on in my life?!


And you thought there was stress in your life !

MEREDERA

Not necessarily direct mortality

Large areas of current habitat may become unavailable or sub-optimal for long periods

OPEN access Freely available online

Projected Evolution of California's San Francisco Bay-Delta-River System in a Century of Climate Change

James E. Cloern¹*, Noah Knowles¹, Larry R. Brown², Daniel Cayan³, Michael D. Dettinger³, Tara L. Morgan², David H. Schoellhamer², Mark T. Stacey⁴, Mick van der Wegen⁵, R. Wayne Wagner⁴, Alan D. Jassby⁶

Estuaries and Coasts (2013) 36:754-774 DOI 10.1007/s12237-013-9585-4

Implications for Future Survival of Delta Smelt from Four Climate Change Scenarios for the Sacramento–San Joaquin Delta, California

Larry R. Brown • William A. Bennett • R. Wayne Wagner • Tara Morgan-King • Noah Knowles • Frederick Feyrer • David H. Schoellhamer • Mark T. Stacey • Michael Dettinger

Combine information on climate change with latest information on physiology

Conservation Physiology

Volume 2 • 2014 10

10.1093/conphys/cou008

Society for Experimental Biology

Research article

Ontogeny influences sensitivity to climate change stressors in an endangered fish

L. M. Komoroske¹, R. E. Connon², J. Lindberg³, B. S. Cheng⁴, G. Castillo⁵, M. Hasenbein^{2,6} and N. A. Fangue¹*

RESEARCH ARTICLE

PLOS ONE

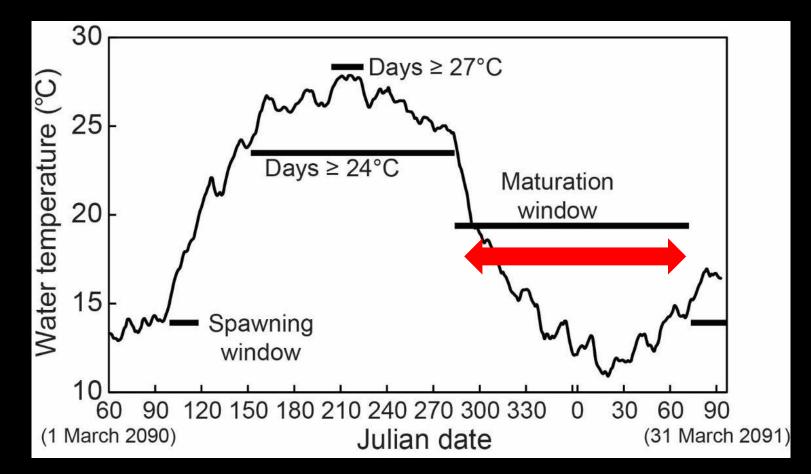
Coupled Downscaled Climate Models and Ecophysiological Metrics Forecast Habitat Compression for an Endangered Estuarine Fish

Larry R. Brown¹*, Lisa M. Komoroske^{2,3}, R. Wayne Wagner⁴, Tara Morgan-King¹, Jason T. May¹, Richard E. Connon⁵, Nann A. Fangue³

Volume 2 • 2014

10.1093/conphys/cou008

Research article


Ontogeny influences sensitivity to climate change stressors in an endangered fish

L. M. Komoroske¹, R. E. Connon², J. Lindberg³, B. S. Cheng⁴, G. Castillo⁵, M. Hasenbein^{2,6} and N. A. Fangue^{1*}

Thresholds		Adults	Post-spawn adults	Larvae	Juveniles
Physiological stress	Days ≥	NA	NA	NA	24
Chronic lethal thermal maximum (50%)	Days ≥	27	25	NA	27
Chronic lethal thermal maximum (95%)	Days ≥	27	27	NA	28
Critical thermal maximum	Days ≥	28	27	29	29
Time periods					
Days in optimal window	15 ≤ Days ≤ 18	NA	NA	Х	Х
Beginning of spawning window (15-20C)	Date	Х	Х	NA	NA
Duration of spawning window	15 ≤ Days ≤ 20	Х	Х	NA	NA

Definition of Maturation Window

(Assume this period needed for growth in length and development of eggs)

Maturation Window as Life Stages

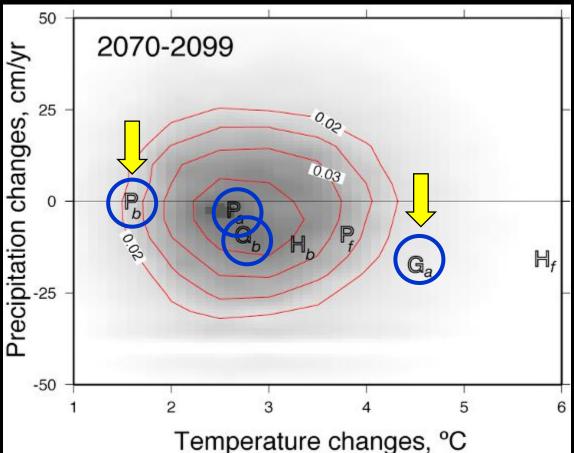
Baseline: juvenile phase to first spawn (272 days)

Life stage	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
Juvenile										Grow	th		
Adult	Ma	turati	on										
Adult													
(post-spawning)													
Larvae													

Modeling Future Water Temperature

Regional air temperatures and insolation

Global Climate Model

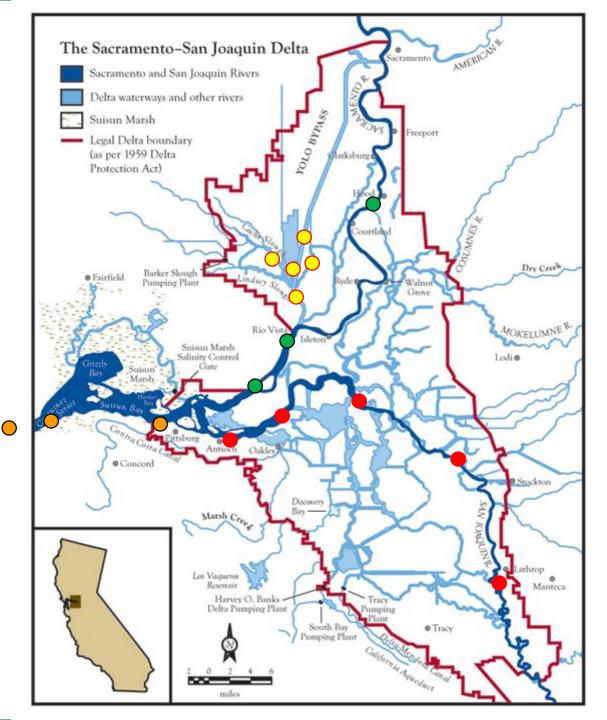

Regression models for water temperature at selected sites: f(Air Temp, Water Temp_{previous day}, insolation)

(Wagner et al. 2011)

Final output: 100 years projected water temperatures at selected sites in the Delta

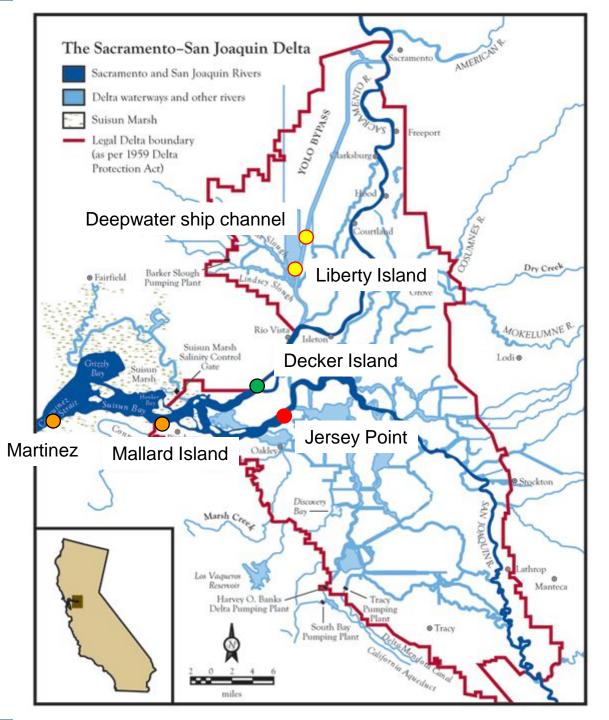
Which Models to Use?

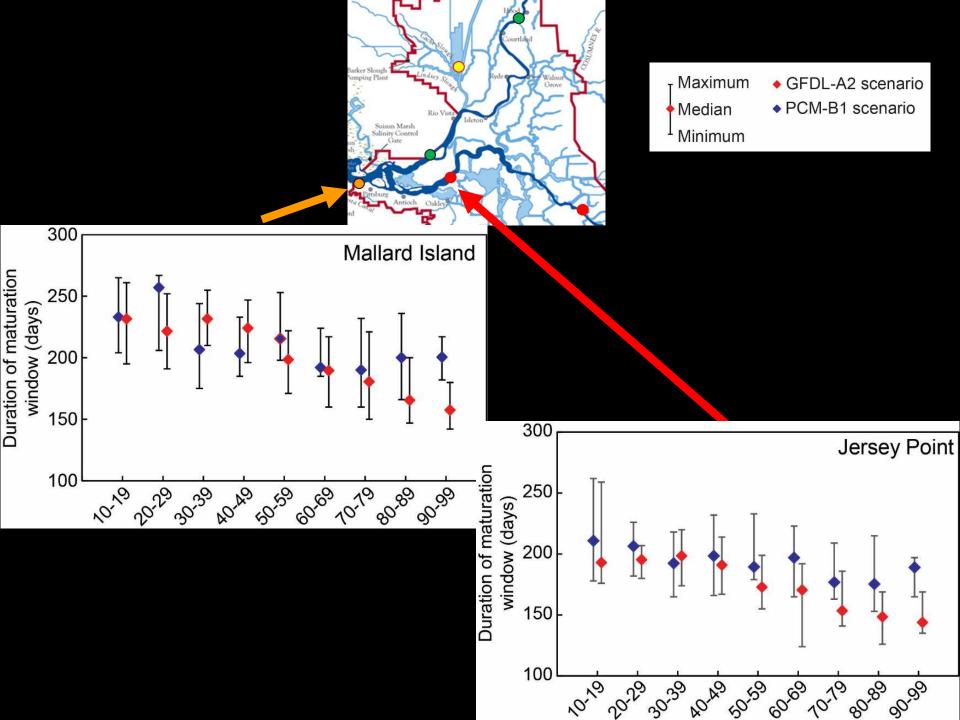
From 100+ recent climate-change projections, four scenarios chosen:

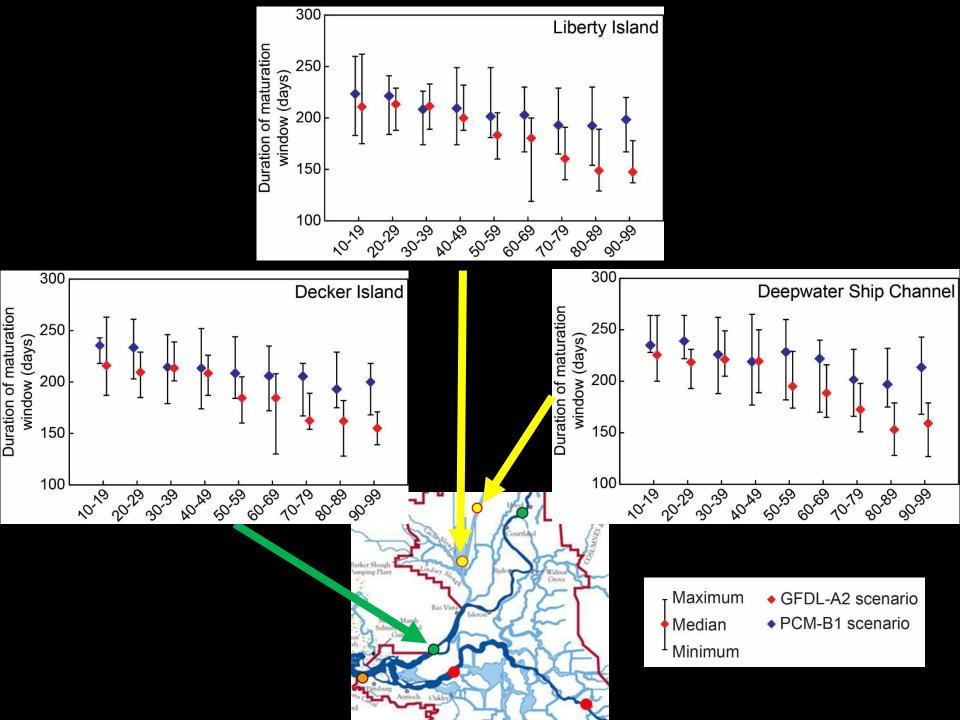

• PCM-B1: Little warmer with little ppt change

•PCM-A2: Medium warmer with little ppt change

•GFDL-B1: Medium warmer and drier

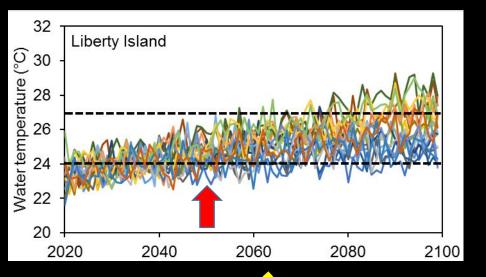

• GFDL-A2: Much warmer and drier <u>but</u> <u>no longer "extreme"</u> Four regions: (Brown et al. 2016)

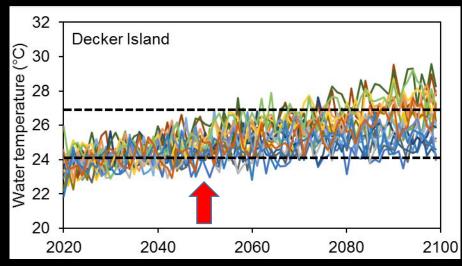

- San Joaquin River
 Warm already
- Sacramento River
 - Cool
- North Delta
 - Cool/warm
 - Food
- Bays
 - Cool



Four regions: (Brown et al. 2016)

- San Joaquin River
 - Warm already
- Sacramento River
 - Cool
- North Delta
 - Cool/warm
 - Food
- Bays
 - Cool

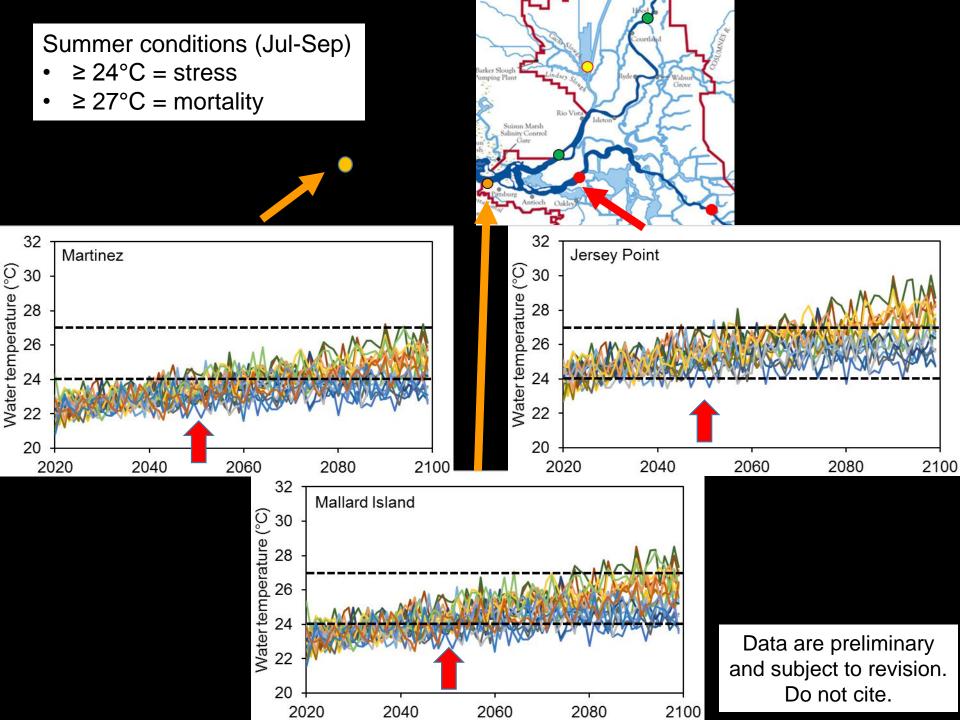



Maturation window (June-Feb=272 days)

			PCM-E	31		GFDL-A2					
	Min	Max	Differ- ence	Percent loss	Trend	Min	Max	Differ- ence	Percent loss	Trend	
San Joaquin River											
Mossdale	165.0	183.0	18.0	6.6	-1.90*	133.5	179.5	46.0	16.9	-5.77**	
Burns Cut	157.0	177.0	20.0	7.4	-2.14**	136.5	176.5	40.0	14.7	-5.20**	
Prisoners Point	181.0	208.5	27.5	10.1	-2.77*	142.5	198.5	56.0	20.6	-6.39***	
Jersey Point	175.5	211.0	35.5	13.1	-3.56**	144.0	198.5	54.5	20.0	-7.46**	
Antioch	180.0	212.0	32.0	11.8	-2.85*	143.5	203.5	60.0	22.1	-7.25**	
Sacramento River											
Hood	197.5	245.0	47.5	17.5	-6.22**	160.0	237.0	77.0	28.3	-9.59***	
Rio Vista	189.5	234.0	44.5	16.4	-4.37**	157.5	225.0	67.5	24.8	-8.59***	
Decker Island	193.0	235.5	42.5	15.6	-4.82***	155.0	216.0	61.0	22.4	-8.54***	
North Delta											
Upper Cache Slough	213.0	264.0	51.0	18.8	-5.28**	161.5	239.0	77.5	28.5	-10.8***	
Miners Slough	213.0	249.5	36.5	13.4	-4.81**	163.0	240.0	77.0	28.3	-10.29***	
Liberty Island	192.5	223.5	31.0	11.4	-3.74**	147.5	213.5	66.0	24.3	-9.48***	
Deepwater Ship Channel	197.0	239.0	42.0	15.4	-4.3**	153.0	225.5	72.5	26.7	-9.84**	
Lower Cache Slough	208.0	244.0	36.0	13.2	-4.72***	153.5	237.0	83.5	30.7	-10.98**	
Confluence											
Mallard Island	203.0	249.0	46.0	16.9	-6.22**	157.5	231.5	74.0	27.2	-10.01***	
Suisun Bay											
Martinez	221.0	255.0	34.0	12.5	NS	172.0	257.0	85.0	31.3	-11.83***	

New Scenarios from IPPC 5th Assessment 2014

- 10 climate change models
- 2 greenhouse gas emission scenarios
- Calculated water temperatures using models
- Looked at average of daily average temperature July-September
- Plotted 2020-2099
- Compared to:
 - $24^{\circ}C = stress$
 - 27°C = mortality



Summer conditions (Jul-Sep)

- $\geq 24^{\circ}C = stress$
- $\geq 27^{\circ}C = mortality$

Data are preliminary and subject to revision. Do not cite.

Conclusions

- Significant changes in the maturation window occurred at all Delta sites examined
- New scenarios show no non-stressful habitat in Delta by mid-century
- Adaptation?
 - Temperature pushing seaward
 - Salinity pushing landward
 - Turbidity? Food? Other factors?

Questions?