Drivers of Decline: Conceptual Models from the Management Analysis and Synthesis Team

Randall Baxter Department of Fish and Wildlife for MAST

Delta and Longfin Smelt: Is Extinction Inevitable? UC Davis March 29, 2016

Report Authors/Contributors

Randall Baxter, California Department of Fish and Wildlife Larry R. Brown, U.S. Geological Survey Gonzalo Castillo, U.S. Fish and Wildlife Service Louise Conrad, California Department of Water Resources Steven Culberson, U.S. Fish and Wildlife Service Matthew Dekar, U.S. Fish and Wildlife Service Frederick Feyrer, Reclamation, now U.S. Geological Survey Karen Gehrts, California Department of Water Resources Lenny Grimaldo, U.S. Bureau of Reclamation, now ICF International Thaddeus Hunt, California State Water Resources Control Board Joseph Kirsch, U.S. Fish and Wildlife Service Anke Mueller-Solger, Delta Stewardship Council, now U.S. Geological Survey Matthew Nobriga, U.S. Fish and Wildlife Service Steven Slater, California Department of Fish and Wildlife Ted Sommer, California Department of Water Resources Kelly Souza, California Department of Fish and Wildlife, now Delta Stewardship Council

Outline

- Background for model development
- Step through Delta Smelt life cycle conceptual model

Fall Low Salinity Habitat Conceptual Model

Scientific Review Panel (and authors) concluded

- Different visualization needed
- Seasons other than fall
- Not just LSZ

Life cycle model...

Suisun Region Stationary Abjotic Habitat Components River Confluence		
Higher	Bathymetric Complexity	Lower
Higher	Erodible Sediment Supply	Lower
Many in South, Fewer in North	Contaminant Sources	Many
Fewer	Entrainment Sites	More
Variable Fall Outflow Regime Dynamic Abiotic Habitat Component		nts Static Fall Outflow Regime
Higher After Wet Springs	Net Total Delta Fall Outflow	Always Low
Higher After Wet Springs	San Joaquin River Contribution to Fall Outflow	Always Low
After Wet Springs, Broad Fall LSZ Overlaps Suisun Region	Location and Extent of the Fall LSZ (1-6 psu)	Narrow Fall LSZ In River Channels, Never Overlaps Suisun Region X2= 85km
Higher After Wet Springs	Hydrodynamic Complexity in the Fall LSZ	Always Lower
Higher After Wet Springs	Wind speed in the Fall LSZ	Always Lower
More Variable, Higher After Wet Springs	Turbidity in the Fall LSZ	Always Less Variable, Lower
More Variable, Maybe Lower After Wet Springs	Contaminant Concentrations in the Fall LSZ	Less Variable, Maybe Higher
LSZ Overlaps Suisun Region Dy	ynamic Biotic Habitat Componen	ts LSZ Overlaps River Confluence
Higher	Food Availability and Quality	Lower
Variable	Predator Abundance	Higher
LSZ Overlaps Suisun Region	Delta Smelt Responses	LSZ Overlaps River Confluence
Broad, Westward	Distribution	Constricted, Eastward
Higher	Growth, Survival, Fecundity	Lower
Better	Health and Condition	Worse
May be Higher	Recruitment in the next Spring	Lower

Conceptual Model Goal

- Develop full life cycle conceptual model
 - fully explain assumptions
- Must facilitate testing hypotheses critical to understanding

Model Description

Background about how we think the Bay-Delta system works in general

Environmental Drivers Habitat Attributes Responses

> Hypotheses about how we think the Delta Smelt population responds to environmental conditions

Caveats

- Connections between environmental drivers and habitat attributes not always known
 - fully explain assumptions
- Not all possible hypotheses are tested
 - not hypotheses with no data
- The same processes may not be important every year

December-May (Winter)

December-May (Winter)

March-June (Spring)

June-September (Summer)

September-December (Fall)

Identified data gaps...

- Contaminants and toxicity effects
- Entrainment and transport
- Predation relative risk could not be evaluated in most cases
- Food incomplete information on prey densities
- Harmful Algal Blooms targeted quantitative sampling
- Quantitative life cycle model needed

The End

An Updated Conceptual Model of Delta Smelt Biology: our evolving understanding of an estuarine fish

http://www.water.ca.gov/iep/

